48 research outputs found

    Overview of increasing the penetration of renewable energy sources in the distribution grid by developing control strategies and using ancillary services

    Get PDF
    Increasing the renewables energy resources in the distribution network is one of the main challenges of the distributed system operator due to instability, power quality and feeder capacity problems. This paper proposes a solution for further penetration of distributed energy resources, by developing control strategies and using ancillary services. Besides the penetration issues, the control strategies will mitigate power quality problems, voltage unbalance and will increase the immunity of the grid by provision of fault ride through capabilities

    Data-driven online temperature compensation for robust field-oriented torque-controlled induction machines

    Get PDF
    Squirrel-cage induction machines (IMs) with indirect field-oriented control are widely used in industry and are frequently chosen for their accurate and dynamic torque control. During operation, however, temperature rises leading to changes in machine parameters. The rotor resistance, in particular, alters, affecting the accuracy of the torque control. The authors investigated the effect of a rotor resistance parameter mismatch in the control algorithm on the angular rotor flux misalignment and the subsequent deviation of stator currents and motor torque from their setpoints. Hence, an online, data-driven torque compensation to eliminate the temperature effect is proposed to enable robust torque-controlled IMs. A model-based analysis and experimental mapping of the temperature effect on motor torque is presented. A temperature-torque lookup-table is subsequently implemented within the control algorithm demonstrating the ability to reduce the detrimental effect of temperature on torque control. Experimental results on a 5.5 kW squirrel-cage induction motor show that the proposed data-driven online temperature compensation method is able to reduce torque mismatch when compared to having no temperature compensation. Up to 17% torque mismatch is reduced at nominal torque and even up to 23% at torque setpoints that are lower than 20% of the nominal torque. A limited torque error of <1% remains in a broad operating range

    Discrete time domain modeling and control of a grid-connected four-wire split-link converter

    Get PDF
    Distributed generation (DG) allows the production of renewable energy where it is consumed, avoiding transport losses. It is envisioned that future DG units will become more intelligent, not just injecting power into the grid but also actively improving the power quality by means of active power filtering techniques. In this manner, voltage and current harmonics, voltage unbalance or over-voltages can be mitigated. To achieve such a smart DG unit, an appropriate multi-functional converter topology is required, with full control over the currents exchanged with the grid, including the neutral-wire current. For this purpose, this article studies the three-phase four-wire split-link converter. A known problem of the split-link converter is voltage unbalance of the bus capacitors. This mid-point can be balanced either by injecting additional zero-sequence currents into the grid, which return through the neutral wire, or by injecting a compensating current into the mid-point with an additional half-bridge chopper. For both methods, this article presents a discrete time domain model to allow controller design and implementation in digital control. Both techniques are validated and compared by means of simulation results and experiments on a test setup

    Impact of solar panel orientation on the integration of solar energy in low-voltage distribution grids

    Get PDF
    In Belgium, and many other countries, rooftop solar panels are becoming a ubiquitous form of decentralised energy production. The increasing share of these distributed installations however imposes many challenges on the operators of the low-voltage distribution grid. They must keep the voltage levels and voltage balance on their grids in check and are often regulatory required to provide sufficient reception capacity for new power producing installations. By placing solar panels in different inclinations and azimuth angles, power production profiles can possibly be shifted to align more with residential power consumption profiles. In this article, it is investigated if the orientation of solar panels can have a mitigating impact on the integration problems on residential low voltage distribution grids. An improved simulation model of a solar panel installation is constructed, which is used to simulate the impact on a residential distribution grid. To stay as close to real-life conditions as possible, real irradiation data and a model of an existing grid are used. Both the developed model as the results on grid impact are evaluated

    Programmable logic device based brushless DC motor control

    Get PDF
    In this article a three-phase BLDC motor controller for use in an Ultra-Light Electrical Vehicle is presented. The control is performed using a Programmable Logic Device (CPLD), which doesn’t require any additional processor. In this way a robust and low-complexity control is obtained. For extending the speed range of the BLDC, a phase advance circuit is implemented as well. The power consumption of the controller is very low which is an interesting feature in battery applications

    A new synchronization technique of a three-phase grid tied inverter for photovoltaic applications

    Get PDF
    Three-phase grid synchronization is one of the main techniques of the three-phase grid connected power inverters used in photovoltaic systems. This technique was used to reach the fast and accurate three-phase grid tied inverter synchronization. In this paper a new synchronization method is presented on the basis of integrating the grid voltage two times (line-to-line or phase voltage). This method can be called “double integral synchronization method” (DISM) as it integrates the grid voltage signals two times to generate the reference signals of three-phase photovoltaic inverter currents. DISM is designed and simulated in this paper to operate in both analog and digital circuits of three-phase photovoltaic inverter system with the same topology. The digital circuit design and dsPIC33FJ256GP710A as a microcontroller (the dsPIC33FJ256GP710A with the Explorer 16 Development Board from microchip) was used practically in this paper to generate and control the sine pulse width modulation (SPWM) technique according to DISM for three-phase photovoltaic inverter system. The main advantage for this method (DISM) is learning how to eliminate the integration constant to generate the reference signals without needing any reference signals or truth table, just the line-to-line or phase voltage of grid

    Inverse thermal identification of a thermally instrumented induction machine using a lumped-parameter thermal model

    Get PDF
    Accurate temperature estimation inside an electrical motor is key for condition monitoring, fault detection, and enhanced end-of-life duration. Additionally, thermal information can benefit motor control to improve operational performance. Lumped-parameter thermal networks (LPTNs) for electrical machines are both flexible and cost-effective in computation time, which makes them attractive for use in real-time condition monitoring and integration in motor control. However, the accuracy of these thermal networks heavily depends on the accuracy of its system parameters, some of which are difficult to calculate analytically or even empirically and need to be determined experimentally. In this paper, a methodology for the thermal condition monitoring of long-duration transient and steady-state temperatures in an induction motor is presented. To achieve this goal, a computationally efficient second-order LPTN for a 5.5 kW squirrel-cage induction motor is proposed to apprehend the dominant heat paths. A fully thermally instrumented induction motor has been prepared to collect spatial and temporal temperature information. Using the experimental stator and rotor temperature data collected at different motor operating speeds and torques, the key thermal parameter values in the LPTN are identified by means of an inverse methodology that aligns the simulated temperatures of the stator windings and rotor with the corresponding measured temperatures. Validation results show that the absolute average thermal modelling error does not exceed 1.45 °C with maximum absolute error of 2.10 °C when the motor operates at fixed speed and torque. During intermittent motor-loading operation, a mean (maximum) stator temperature error of 0.38 °C (0.92 °C) was achieved and mean (maximum) rotor errors of 2.11 °C (3.40 °C). These results show the validity of the proposed thermal model but also its ability to predict in real time the temperature variations in stator and rotor for condition monitoring and motor control

    New pulse width modulation technique to reduce losses for three-phase photovoltaic inverters

    Get PDF
    Nowadays, most three-phase, “of the shelf” inverters use electrolytic capacitors at the DC bus to provide short term energy storage. However, this has a direct impact on inverter lifetime and the total cost of the photovoltaic system. Tis article proposes a novel control strategy called a 120∘ bus clamped PWM (120BCM). Te 120BCM modulates the DC bus and uses a smaller DC bus capacitor value, which is typical for flm capacitors. Hence, the inverter lifetime can be increased up to the operational lifetime of the photovoltaic panels. Tus, the total cost of ownership of the PV system will decrease signifcantly. Furthermore, the proposed 120BCM control strategy modulates only one phase current at a time by using only one leg to perform the modulation. As a result, switching losses are signifcantly reduced. Te full system setup is designed and presented in this paper with some practical result
    corecore